����JFIF�����%%��� }!1AQa"q2���#B��R��$3br� %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz������������������������������������������������������������������������� w!1AQaq"2�B���� #3R�br� $4�%�&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz��������������������������������������������������������������������������?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|��O�������h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@��o�E��/�?��ߵE_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ ?�z�����������goڢ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?��=[�Qg�����o����Q@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y�����[����TP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,���|-��v��(���� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�������;~��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@�������?�_�����j������ (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@��o�E��/�?��ߵE_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ ?�z�����������goڢ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?��=[�Qg�����o����Q@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y�����[����TP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,���|-��v��(���� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�������;~��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@�������?�_�����j������ (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@��o�E��/�?��ߵE_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ ?�z�����������goڢ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?��=[�Qg�����o����Q@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y�����[����TP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,��������ο�O�P��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������k�w���~���v��������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j�?�5o�%��?��� g����U@�����&O3�����a�;�^=�wH���D��/��*� �fX�I���,������k?g_���?�5o�%��?��� g����U@�F�����������*������?�o�}��Τ~g��ʀ�#V��Y������~ο�T�j��K/� ������������z��������#;�~���A�;��� w�F�����������*���տ��_�@�o��5����EU������������u�誠��W��[�����������O��?jW���@��տ���@�o��5����EM������������v�訠�#V��Y�������������V��Zv��~����vw�~���c�Q@���,��~���kgo���?�5o�%��/��� o����Q@��o�%�>�ߤ���߳����S������?��o�%�~�ߠ�d�߳����S����g�P��j��K?� _������������[� g�D����[�;�TP7���������'Ѿ���=��;/�P��j��K?� _������������[� g�D����[�;�TP���,��~���kgo���a������۔���B{���ea�`T�+ �n%Ц �����j��K?� _������������[� g�D����[�;�TP���,��~���kgo����?���%�/�~�����#����x��c�~�q�v�t`ȫ��_'h���������'�]�;{s� Pp=N= 5���%�����ڜs�����=���J��A@�����Kp�b��}��X�����4g v+:�Բ�+60�ʩ,� @�����������I �uO�����ToUv��bgUl�cP�T?�#V��Y������������j��K?� _����������!��X��]���������TK�|4��`� ��#��P\y��aa >NgL��j��K?� _������������[� g�D����[�;�TP���,��~���kgo���o�F�����$��ہ�� ��vݞr6��S�q''*02���[� g�D����[�;�TP���,��~���kgo���?�5o�%��/��� o����Q@�F�����������*(��տ���@�o��5����EE������������v�訠��������~1�o���}G�L�������5o�%��/��� o����Q@�F�����������*(��տ���@�o��5����EE5����%�˷���r�v����y�\~���)(?0���=[� i����>��gc��N=����5o�%��/��� o����Q@�F�����������*(��W��Z�l����m#���X�wn_�j`0C6윅����5o�%��/��� o����Q@��տ��y9���gbO�G�5@�n�>���#V��Y������~ο�T��V��Y����9�gc��s�T.�?Z_��[� e�D����Y�:��UP���,������k?g_����_�=_� n�~~�rI������w�,"~ԓ�!72���)( u��#V��Y������~ο�T�j��K/� ��������������K
�����Kr_���}�De>~��Z=��pjX�n[p(�"� �a,Ub�/�×�<����;��<�����K>��o���[�:����V���,��$��ϧ�*�����5O����տ��_�@�o��5����EU5��o�%����?�ꜜm�_�;>Gbs�S�����@��տ��_�@�o��5����EU ��տ��}�~�����v?�������-��o�l��~�ȥ�v����r��B1���@��տ���A�?����ggP��c�S�`@%�*����տ��_�@�o��5����EU������������u�誠7���� O���!c�|0��ёv��4�+�X�Vx�RX3��8����K>��o���[�:���u#�x��#V��Y������~ο�T�j��K/� ������������[� e�D����Y�:��UP���,������k?g_���O��[� g�D����[�:��T��=_� k����~��k����c�;����.8����c��z��Ͽ�/��zc�o����F?Z_��[� e�D����Y�:��UP���,������k?g_���C���,�v����v�o���H������(�z���w�/�����v ��T.G��Ϡ���տ��_�@�o��5����EU������������u�誠��W��[��'����%��o���:�Cڕ�R̀���j���������?�o���[�;������g0q�?��o�%�>o�_��>�gf����~4�������������u�誠�z���7�/��o���������_��[� e�D����Y�:��UP���,������k?g_���C���,�|�����o��;�Ԟ��9�l�z��ؠ3|��O�X�~���;~�q����Z�F�����������*���տ��_�@�o��5����EU!��տ��}�~����-��G��I�T�������������u�誠�#V��Y������~ο�T�j��K/� ����������#�=_� n|���KbB�gtdM��"�ڒA#n�63�6�m�P�����,���/���gS�u����#�9��5o�%��?��� g����U@��o�%�o�_�����u��'�������?��o��� ���3��?go���|m�ڇ���-S�O��x��>���^�����7����x�]_�>�qke>���m��4��7P�Yހ��
0byt3m1n1
0byt3m1n1
Path:
/
hermes
/
bosweb
/
web
/
b2920
/
robertgrove.netfirms.com
/
cxmlda
/
cache
/
[
Home
]
File: b01b459a9bccc7b19f1913ca984248eb
a:5:{s:8:"template";s:3561:"<!DOCTYPE html> <html lang="en"> <head> <meta content="width=device-width, initial-scale=1.0" name="viewport"> <meta charset="utf-8"> <title>{{ keyword }}</title> <style rel="stylesheet" type="text/css">body,div,footer,header,html,p,span{border:0;outline:0;font-size:100%;vertical-align:baseline;background:0 0;margin:0;padding:0}a{text-decoration:none;font-size:100%;vertical-align:baseline;background:0 0;margin:0;padding:0}footer,header{display:block} .left{float:left}.clear{clear:both}a{text-decoration:none}.wrp{margin:0 auto;width:1080px} html{font-size:100%;height:100%;min-height:100%}body{background:#fbfbfb;font-family:Lato,arial;font-size:16px;margin:0;overflow-x:hidden}.flex-cnt{overflow:hidden}body,html{overflow-x:hidden}.spr{height:25px}p{line-height:1.35em;word-wrap:break-word}#floating_menu{width:100%;z-index:101;-webkit-transition:all,.2s,linear;-moz-transition:all,.2s,linear;transition:all,.2s,linear}#floating_menu header{-webkit-transition:all,.2s,ease-out;-moz-transition:all,.2s,ease-out;transition:all,.2s,ease-out;padding:9px 0}#floating_menu[data-float=float-fixed]{-webkit-transition:all,.2s,linear;-moz-transition:all,.2s,linear;transition:all,.2s,linear}#floating_menu[data-float=float-fixed] #text_logo{-webkit-transition:all,.2s,linear;-moz-transition:all,.2s,linear;transition:all,.2s,linear}header{box-shadow:0 1px 4px #dfdddd;background:#fff;padding:9px 0}header .hmn{border-radius:5px;background:#7bc143;display:none;height:26px;width:26px}header{display:block;text-align:center}header:before{content:'';display:inline-block;height:100%;margin-right:-.25em;vertical-align:bottom}header #head_wrp{display:inline-block;vertical-align:bottom}header .side_logo .h-i{display:table;width:100%}header .side_logo #text_logo{text-align:left}header .side_logo #text_logo{display:table-cell;float:none}header .side_logo #text_logo{vertical-align:middle}#text_logo{font-size:32px;line-height:50px}#text_logo.green a{color:#7bc143}footer{color:#efefef;background:#2a2a2c;margin-top:50px;padding:45px 0 20px 0}footer .credits{font-size:.7692307692em;color:#c5c5c5!important;margin-top:10px;text-align:center}@media only screen and (max-width:1080px){.wrp{width:900px}}@media only screen and (max-width:940px){.wrp{width:700px}}@media only screen and (min-width:0px) and (max-width:768px){header{position:relative}header .hmn{cursor:pointer;clear:right;display:block;float:right;margin-top:10px}header #head_wrp{display:block}header .side_logo #text_logo{display:block;float:left}}@media only screen and (max-width:768px){.wrp{width:490px}}@media only screen and (max-width:540px){.wrp{width:340px}}@media only screen and (max-width:380px){.wrp{width:300px}footer{color:#fff;background:#2a2a2c;margin-top:50px;padding:45px 0 20px 0}}@media only screen and (max-width:768px){header .hmn{bottom:0;float:none;margin:auto;position:absolute;right:10px;top:0}header #head_wrp{min-height:30px}}</style> </head> <body class="custom-background"> <div class="flex-cnt"> <div data-float="float-fixed" id="floating_menu"> <header class="" style=""> <div class="wrp side_logo" id="head_wrp"> <div class="h-i"> <div class="green " id="text_logo"> <a href="{{ KEYWORDBYINDEX-ANCHOR 0 }}">{{ KEYWORDBYINDEX 0 }}</a> </div> <span class="hmn left"></span> <div class="clear"></div> </div> </div> </header> </div> <div class="wrp cnt"> <div class="spr"></div> {{ text }} </div> </div> <div class="clear"></div> <footer> <div class="wrp cnt"> {{ links }} <div class="clear"></div> <p class="credits"> {{ keyword }} 2022</p> </div> </footer> </body> </html>";s:4:"text";s:12319:"Now to change the parameters click on the right side at . MinLoss = 0 3. for all Attribute k in D do: 3.1. loss = GiniIndex(k, d) 3.2. if loss<MinLoss then 3.2.1. Interpreting the Output The outcome of training and testing appears in the Classier Output box on the right. The actual tree starts with the root node labelled 1) . The closer AUC is to 1, the better the model. Found only on the islands of New Zealand, the Weka is a flightless bird with an inquisitive nature. Each Example follows the branches of the tree in accordance to the splitting rule until a leaf is reached. For ex. It can be needed if we want to implement a Decision Tree without Scikit-learn or different than Python language. wekaclassifiers>trees>J48. Decision trees are simple to understand and interpret, and Vote. You can see that when you split by sex and sex <= 0 you reach a prediction. Petra.Kralj@ijs.si . Load full weather data set again in explorer and then go to Classify tab. This will be explained in detail later. We use the training data to construct the . See Information gain and Overfitting for an example. After loading a dataset, click on the select attributes tag to open a GUI which will allow you to choose both the evaluation method (such as Principal Components Analysis for example) and the search method (f. ex. . A list inheriting from classes Weka_tree and Weka_classifiers with components including. how old was lori when steve adopted her? To quantify this, we can calculate the AUC (area under the curve) which tells us how much of the plot is located under the curve. Step 7: Tune the hyper-parameters. 13 answers. 0. For example, Class 2 members have attribute 1 >= 8, attribute 2 < 6, attribute 3 between 1/1/2013 and 12/31/2013. Weka 3: Machine Learning Software in Java. There are many algorithms for creating such tree as ID3, c4.5 (j48 in weka) etc. A decision tree is a tool that builds regression models in the shape of a tree structure. Training and Visualizing a decision trees. each problem there is a representation of the results with explanations side by side. A decision rule is a simple IF-THEN statement consisting of a condition (also called antecedent) and a prediction. Click Start to run the algorithm. In image classication, the decision trees are mostly reliable and easy to interpret, as greedy or #1) Open WEKA and select "Explorer" under 'Applications'. . We can create a decision tree by hand or we can create it with a graphics program or some specialized software. Click the "Choose" button and select "LinearRegression" under the "functions" group. Decision tree has been used in numerous studies on prediction of student's academic performance [17][18][19] because classification rules can be derived in a single view. About Press Copyright Contact us Creators Advertise Developers Terms Privacy Policy & Safety How YouTube works Test new features Press Copyright Contact us Creators . 4 shows the constructed decision tree for Random The Random Tree, RepTree and J48 decision tree were used Classified for the model construction. Be sure that the Play attribute is selected as a class selector, and then . In the following section, we describe the implementation of a decision tree in Java. Step 3: Create train/test set. These steps and the resulting window are shown in Figures 28 and 29. J48 classification is a supervised learning algorithm, where the class of an instance in the training set is known. The columns tell you how your model . A completed decision tree model can be overly-complex, contain unnecessary structure, and be difficult to interpret. 0. Question. When they are being built decision trees are constructed by recursively evaluating different features and using at each node the feature that best splits the data. Classification via Decision Trees Week 4 Group Exercise DBST 667 - Data Mining For this exercise, you will use WEKA Explorer interface to run J48 decision tree classification algorithm. This class generates pruned or unpruned C4.5 decision trees. Click on "Open File". Scroll through the text and examine it. Go to the "Result list" section and right-click on your trained algorithm Choose the "Visualise tree" option Your decision tree will look like below: Interpreting these values can be a bit intimidating but it's actually pretty easy once you get the hang of it. Go ahead: > library ( rpart) In: Proceeding of the Sixteenth International Conference on Machine Learning, Bled, Slovenia, 124-133, 1999. Asked 29th Dec, 2016 . Decision trees provide a way to present algorithms with conditional control statements. First, look at the part that describes the deci-sion tree, reproduced in Figure 17.2(b). Decision Tree is a popular supervised machine learning algorithm for classification and regression tasks. Weka Visualization of a Decision Tree k-Nearest Neighbors The k-nearest neighbors algorithm supports both classification and regression. The more that the ROC curve hugs the top left corner of the plot, the better the model does at classifying the data into categories. Step 2: Clean the dataset. Decision trees break the data down into smaller and smaller subsets, they are typically used for machine learning and data . A decision tree is a tool that builds regression models in the shape of a tree structure. ; Regression tree analysis is when the predicted outcome can be considered a real number (e.g. What is the algorithm of J48 decision tree for classification ? The next video will show you how to code a decisi. It employs top-down and greedy search through all possible branches to construct a decision tree to model the classification process. But it ignores the "operational" side of the decision tree, namely the path through the decision nodes and the information that is available there. the price of a house, or a patient's length of stay in a hospital). The results are to be stored in an ARFF file called MyResults.arff in the specified subfolder. pop-up window select the menu item "Visualize classifier errors". 5) Compile the code from the parent directory where you created the directory in step 2: javac -cp <path to weka.jar>;. pro home cooks sourdough pizza; chat qui accouche dehors; can you get injured in mycareer 2k22 next gen? The most relevant part is: Roughly, the algorithm works as follows: 1) Test the global null hypothesis of independence between any of the input variables and the response (which may be multivariate as well). Click on the name of the algorithm to review the algorithm configuration. Its use is quite widespread especially in the domain of Natural language processing, document classification and allied. Decision trees take the shape of a graph that illustrates possible outcomes of different decisions based on a variety of parameters. . 5 . The default J48 decision tree in Weka uses pruning based on subtree raising, confidence factor of 0.25, minimal number of objects is set to 2, and nodes can have multiple splits. Step 5: Make prediction. The Random Tree, RepTree and J48 decision tree were used Classified for the model construction. aesthetic picrew avatar maker Tree = {} 2. This will be carried out in both Weka and R. Section 1: Weka. 2, Fig. 2, Fig. Practice with Weka 1. . As mentioned in earlier sections, this article will use the J48 decision tree available at the Weka package. #2) Select the "Pre-Process" tab. predictions. Weka Configuration of Linear Regression The performance of linear regression can be reduced if your training data has input attributes that are highly correlated. Probably the best way to start the explanation is by seen what a decision tree looks like, to build a quick intuition of how they can be used. X<2, y>=10 etc. It is considered as the building . A decision tree is the same as other trees structure in data structures like BST, binary tree and AVL tree. Interpret Decision Tree models with dtreeviz library. As already mentioned, one should be cautious when interpreting the results above, since accuracy is not a well suited performance measure in cases of unbalanced . Here we are selecting the weather-nominal dataset to execute. Question. a reference (of class jobjRef) to a Java object obtained by applying the Weka buildClassifier method to build the specified model using the given control options. Image 2: Load data. Decision tree. In order to classify a new item, it first needs to create a decision tree based on the attribute values of the available training data. Decision Tree Raising. Figures 6 and 7 shows the decision tree and the classification rules respectively as extracted from WEKA. The one we'll need for this lesson comes with R. It's called rpart for "Recursive Partitioning and Regression Trees" and uses the CART decision tree algorithm. The number of boosting iterations needs to be manually tuned to suit the dataset and the desired complexity/accuracy tradeoff. Step 6: Measure performance. ; The term classification and regression . Each level in your tree is related to one of the variables (this is not always the case for decision trees, you can imagine them being more general). Decision trees It works for both categorical and continuous input and output variables. Now that we have seen what WEKA is and what it does, in the next chapter let us learn how to install WEKA on your local computer. Once you've installed WEKA, you need to start the application. It is also called kNN for short. Decision Trees in AIMA, WEKA, and SCIKIT-LEARN . As already mentioned, one should be cautious when interpreting the results above, since accuracy is not a well suited performance measure in cases of unbalanced . Stop if this hypothesis cannot be rejected. Building a Naive Bayes model. In your data, the target variable was either "functional" or "non-functional;" the right side of the matrix tells you that column "a" is functional, and "b" is non-functional. . Implementing a Decision Tree Algorithm in Java. Build a decision tree with the ID3 algorithm on the lenses dataset, evaluate on a separate test set 2. #2) Open WEKA Explorer and under Preprocess tab choose "apriori.csv" file. It is a probabilistic algorithm used in machine learning for designing classification models that use Bayes Theorem as their core. By the time you reach the end of this tutorial, you will be able to analyze your data with WEKA Explorer using various learning schemes and interpret received results. nodes Easier to interpret Lower classification . The next line indicates that a ``*'' denotes a terminal node of the tree (i.e., a leaf nodethe tree is not split any further at that node). Decision Trees are easy to move to any programming language because there are set of if-else . for people to interpret >>> zt.display() Zoo example Test legs legs = 0 ==> Test fins . Decision trees. Fig. Let's build the decision tree using the Weka Explorer. The following picture shows the setup for a n 8 fold cross validation, applying a decision tree and Naive Bayes to the iris and labor dataset that are included in the Weka Package. Value. Classification (also known as classification trees or decision trees) is a data mining algorithm that creates a step-by-step guide for how to determine the output of a new data instance. With WEKA user, you can access WEKA sample files. Let's have a closer look at the . For example: IF it rains today AND if it is April (condition), THEN it will rain tomorrow (prediction). This is shown in the screenshot below . Root Node: The top-most decision node in a decision tree. Muhammad Aasem on 25 May 2012. A decision tree is a support tool with a tree-like structure that models probable outcomes, cost of resources, utilities, and possible consequences. Very similar to the commercial C4.5, this classifier creates a decision tree to predict class membership. observations and a default decision of No . weka.classifiers.trees. Weka - Installation. Classification on the CAR dataset - Preparing the data - Building decision trees - Naive Bayes classifier - Understanding the Weka output. ";s:7:"keyword";s:46:"how to interpret decision tree results in weka";s:5:"links";s:1276:"<ul><li><a href="https://mobilemechanic.reviews/cxmlda/14664242dfbe770">Will I Receive A Check From The Us Treasury?</a></li> <li><a href="https://mobilemechanic.reviews/cxmlda/14663655dfbe77599b6205c05b80a0952109">Restaurants In Woodbridge Nj</a></li> <li><a href="https://mobilemechanic.reviews/cxmlda/14664644dfbe77115a2b9401f8924b5">New Developments In Aurora Ohio</a></li> <li><a href="https://mobilemechanic.reviews/cxmlda/14663408dfbe77a1fc45a78">Can Orthodox Receive Catholic Sacraments</a></li> <li><a href="https://mobilemechanic.reviews/cxmlda/14663626dfbe77c0bde3f564a0f25">Forest River Fresh Water Tank Replacement</a></li> <li><a href="https://mobilemechanic.reviews/cxmlda/14664125dfbe7749411e3f0cedb7f2dc0153d9">Thompson M1a1 Wood Stock</a></li> <li><a href="https://mobilemechanic.reviews/cxmlda/14663516dfbe77139ee411f7f">Immunitrax Mgccc Login</a></li> <li><a href="https://mobilemechanic.reviews/cxmlda/14663298dfbe77e35ea4073fd4905d3734">What Happened To Ariana Dumbledore When She Was 6</a></li> <li><a href="https://mobilemechanic.reviews/cxmlda/14665846dfbe77e8947a">Does Michael Afton Possess Nightmare Foxy</a></li> <li><a href="https://mobilemechanic.reviews/cxmlda/14664027dfbe77c24e">Summarizecolumns May Not Be Used In This Context</a></li> </ul>";s:7:"expired";i:-1;}
© 2017 -
ZeroByte.ID
.