����JFIF�����%%��� }!1AQa"q2���#B��R��$3br� %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz������������������������������������������������������������������������� w!1AQaq"2�B���� #3R�br� $4�%�&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz��������������������������������������������������������������������������?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|��O�������h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@��o�E��/�?��ߵE_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ ?�z�����������goڢ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?��=[�Qg�����o����Q@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y�����[����TP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,���|-��v��(���� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�������;~��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@�������?�_�����j������ (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@��o�E��/�?��ߵE_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ ?�z�����������goڢ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?��=[�Qg�����o����Q@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y�����[����TP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,���|-��v��(���� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�������;~��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@�������?�_�����j������ (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@��o�E��/�?��ߵE_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ ?�z�����������goڢ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?��=[�Qg�����o����Q@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y�����[����TP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,��������ο�O�P��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@����(���g���Y������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���V��Y|����Y����UP��@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P����,�����,��u������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j���h�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� �@���o�E��?�?����ο�U_�P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@ _�z�����������g_ڪ�?��(�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (��?�/�=[�Qe�����g����U@��P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������k�w���~���v��������� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (�� (���տ�_�����:��T�~�@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@P@������/���?��j�?�5o�%��?��� g����U@�����&O3�����a�;�^=�wH���D��/��*� �fX�I���,������k?g_���?�5o�%��?��� g����U@�F�����������*������?�o�}��Τ~g��ʀ�#V��Y������~ο�T�j��K/� ������������z��������#;�~���A�;��� w�F�����������*���տ��_�@�o��5����EU������������u�誠��W��[�����������O��?jW���@��տ���@�o��5����EM������������v�訠�#V��Y�������������V��Zv��~����vw�~���c�Q@���,��~���kgo���?�5o�%��/��� o����Q@��o�%�>�ߤ���߳����S������?��o�%�~�ߠ�d�߳����S����g�P��j��K?� _������������[� g�D����[�;�TP7���������'Ѿ���=��;/�P��j��K?� _������������[� g�D����[�;�TP���,��~���kgo���a������۔���B{���ea�`T�+ �n%Ц �����j��K?� _������������[� g�D����[�;�TP���,��~���kgo����?���%�/�~�����#����x��c�~�q�v�t`ȫ��_'h���������'�]�;{s� Pp=N= 5���%�����ڜs�����=���J��A@�����Kp�b��}��X�����4g v+:�Բ�+60�ʩ,� @�����������I �uO�����ToUv��bgUl�cP�T?�#V��Y������������j��K?� _����������!��X��]���������TK�|4��`� ��#��P\y��aa >NgL��j��K?� _������������[� g�D����[�;�TP���,��~���kgo���o�F�����$��ہ�� ��vݞr6��S�q''*02���[� g�D����[�;�TP���,��~���kgo���?�5o�%��/��� o����Q@�F�����������*(��տ���@�o��5����EE������������v�訠��������~1�o���}G�L�������5o�%��/��� o����Q@�F�����������*(��տ���@�o��5����EE5����%�˷���r�v����y�\~���)(?0���=[� i����>��gc��N=����5o�%��/��� o����Q@�F�����������*(��W��Z�l����m#���X�wn_�j`0C6윅����5o�%��/��� o����Q@��տ��y9���gbO�G�5@�n�>���#V��Y������~ο�T��V��Y����9�gc��s�T.�?Z_��[� e�D����Y�:��UP���,������k?g_����_�=_� n�~~�rI������w�,"~ԓ�!72���)( u��#V��Y������~ο�T�j��K/� ��������������K
�����Kr_���}�De>~��Z=��pjX�n[p(�"� �a,Ub�/�×�<����;��<�����K>��o���[�:����V���,��$��ϧ�*�����5O����տ��_�@�o��5����EU5��o�%����?�ꜜm�_�;>Gbs�S�����@��տ��_�@�o��5����EU ��տ��}�~�����v?�������-��o�l��~�ȥ�v����r��B1���@��տ���A�?����ggP��c�S�`@%�*����տ��_�@�o��5����EU������������u�誠7���� O���!c�|0��ёv��4�+�X�Vx�RX3��8����K>��o���[�:���u#�x��#V��Y������~ο�T�j��K/� ������������[� e�D����Y�:��UP���,������k?g_���O��[� g�D����[�:��T��=_� k����~��k����c�;����.8����c��z��Ͽ�/��zc�o����F?Z_��[� e�D����Y�:��UP���,������k?g_���C���,�v����v�o���H������(�z���w�/�����v ��T.G��Ϡ���տ��_�@�o��5����EU������������u�誠��W��[��'����%��o���:�Cڕ�R̀���j���������?�o���[�;������g0q�?��o�%�>o�_��>�gf����~4�������������u�誠�z���7�/��o���������_��[� e�D����Y�:��UP���,������k?g_���C���,�|�����o��;�Ԟ��9�l�z��ؠ3|��O�X�~���;~�q����Z�F�����������*���տ��_�@�o��5����EU!��տ��}�~����-��G��I�T�������������u�誠�#V��Y������~ο�T�j��K/� ����������#�=_� n|���KbB�gtdM��"�ڒA#n�63�6�m�P�����,���/���gS�u����#�9��5o�%��?��� g����U@��o�%�o�_�����u��'�������?��o��� ���3��?go���|m�ڇ���-S�O��x��>���^�����7����x�]_�>�qke>���m��4��7P�Yހ��
0byt3m1n1
0byt3m1n1
Path:
/
hermes
/
bosweb
/
web
/
b2920
/
robertgrove.netfirms.com
/
epcmovt
/
cache
/
[
Home
]
File: 9a95c5ecdef3845713d27fc97c56e7ec
a:5:{s:8:"template";s:8454:"<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <title>{{ keyword }}</title> <link href="https://fonts.googleapis.com/css?family=Open+Sans%3A400italic%2C600italic%2C700italic%2C400%2C300%2C600%2C700%7COpen+Sans%3Anormal%2C300%7COpen+Sans%3Anormal%2C300%7COpen+Sans%3Anormal%2C300%7COpen+Sans%3Anormal%2C300%7COpen+Sans%3Anormal%2C300%7COpen+Sans%3Anormal%2C300%7COpen+Sans%3Anormal%2C300&subset=latin&ver=4.9.8" id="themify-google-fonts-css" media="all" rel="stylesheet" type="text/css"/> <meta content="width=device-width, initial-scale=1" name="viewport"/> <style rel="stylesheet" type="text/css">a:focus{outline:1px dotted rgba(150,150,150,.7)}p.has-drop-cap:not(:focus):first-letter{float:left;font-size:8.4em;line-height:.68;font-weight:100;margin:.05em .1em 0 0;text-transform:uppercase;font-style:normal}.clearfix:after{content:"";display:table;clear:both}.full-section-scrolling .module-video:not(.video-autoplay) .video-wrap:not(:active):before{content:'';position:absolute;top:0;bottom:0;left:0;right:0;z-index:10}a,body,div,html,li,ul{margin:0;padding:0}a{border:0}footer,header,nav{display:block} body{font:1em/1.65em 'Open Sans',Arial,sans-serif;word-wrap:break-word;color:#666;-webkit-font-smoothing:antialiased;-ms-text-size-adjust:100%;-moz-text-size-adjust:100%;-webkit-text-size-adjust:100%;text-size-adjust:100%}a{text-decoration:none;outline:0;color:#ed1e24;-webkit-transition:all .3s ease-in-out;-moz-transition:all .3s ease-in-out;transition:all .3s ease-in-out}a:hover{text-decoration:underline}ul{margin:0 0 1.4em 1.6em;padding:0}li{margin:0 0 1em 0;padding:0}#body,#footer,#footerwrap,#header,#headerwrap,#main-nav,#pagewrap,.header-bar,.pagewidth,.sidemenu{-moz-box-sizing:border-box;box-sizing:border-box}.pagewidth{width:1160px;max-width:100%;margin:0 auto}#body{max-width:100%;clear:both}#headerwrap{color:#000;background-color:#fafafa;border-bottom:1px solid rgba(0,0,0,.1);position:relative;width:100%;min-height:55px;z-index:999;top:0;left:0;-webkit-transition:all .3s ease-in-out;-moz-transition:all .3s ease-in-out;transition:all .3s ease-in-out}#header{position:relative;text-align:center;padding:2em 0;overflow:visible;z-index:1;-webkit-transition:all .3s ease-in-out;-moz-transition:all .3s ease-in-out;transition:all .3s ease-in-out}#site-logo{margin:.5em auto .6em;padding:0;line-height:1.2em;font-weight:300;font-size:2.6em;font-style:normal;text-transform:uppercase;letter-spacing:.055em;-moz-transition:all .2s ease-in-out;-webkit-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.social-widget{display:inline-block;margin:0;vertical-align:middle}#main-nav{margin:0;padding:0}#main-nav li{margin:0;padding:0;list-style:none;position:relative;display:inline-block}#main-nav a{color:inherit;display:block;padding:.6em;margin:0;text-decoration:none;-moz-transition:all .2s ease-in-out;-webkit-transition:all .2s ease-in-out;transition:all .2s ease-in-out}#main-nav a:hover{color:#ed1e24}#main-nav{position:relative}#menu-icon-close{display:none}#headerwrap #menu-icon-close{-webkit-transform:rotateZ(0);-moz-transform:rotateZ(0);transform:rotateZ(0);-webkit-transition:all .3s ease-in-out;-moz-transition:all .3s ease-in-out;transition:all .3s ease-in-out}#headerwrap #menu-icon-close:hover{-webkit-transform:rotateZ(90deg);-moz-transform:rotateZ(90deg);transform:rotateZ(90deg)}#footerwrap{clear:both;border-top:1px solid rgba(0,0,0,.1);text-align:center;padding:54px 0 2em;background-color:#fafafa}#footer{font-size:.9em}.footer-text{clear:both;padding:0 0 1.5em;line-height:1.8em;font-size:.85em}.main-col{box-sizing:border-box}#body:after,#footer:after,#main-nav:after,.clearfix:after,footer:after{content:"";display:table;clear:both}body:after{content:"";opacity:0;z-index:-1}@media screen and (max-width:1200px){#pagewrap{max-width:100%}.pagewidth{max-width:96%}body{font-size:1em}}@media screen and (max-width:760px){body{font-size:.95em}body .pagewidth{max-width:90%}}@media screen and (max-width:680px){#footerwrap{padding-top:35px}}#header{text-align:inherit;padding:.15em 28px;width:100%}.header-bar{float:left}#site-logo{font-size:1.5em;margin:13px .5em 0 0;display:inline-block;vertical-align:middle}#header .social-widget{float:left;margin:8px 0 0;-moz-transition:all .2s ease-in-out;-webkit-transition:all .2s ease-in-out;transition:all .2s ease-in-out}body:not(.slide-cart):not(.mobile_menu_active) #main-nav-wrap{display:-webkit-box;display:-moz-box;display:-ms-flexbox;display:-webkit-flex;display:flex;-webkit-align-items:center;align-items:center;-webkit-justify-content:flex-end;justify-content:flex-end;position:relative}body:not(.slide-cart):not(.mobile_menu_active) #main-nav{position:static}#main-nav{float:right;clear:right;-moz-transition:all .2s ease-in-out;-webkit-transition:all .2s ease-in-out;transition:all .2s ease-in-out;margin:0}.fixed-header #header{min-height:inherit}a,body #headerwrap a,body #main-nav a,body .sidemenu a{color:#8a8a8a}#headerwrap{background:0 0;background-color:#3d3d3d}#header{color:#8a8a8a}#headerwrap a{color:#0099b5}#headerwrap a:hover{color:#0099b5}#main-nav a,#main-nav>li>a{color:#ebebeb}#main-nav-wrap #main-nav a:hover,#main-nav-wrap #main-nav>li>a:hover{color:#008da8}@font-face{font-family:'Open Sans';font-style:italic;font-weight:400;src:local('Open Sans Italic'),local('OpenSans-Italic'),url(https://fonts.gstatic.com/s/opensans/v17/mem6YaGs126MiZpBA-UFUK0Zdcg.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:italic;font-weight:600;src:local('Open Sans SemiBold Italic'),local('OpenSans-SemiBoldItalic'),url(https://fonts.gstatic.com/s/opensans/v17/memnYaGs126MiZpBA-UFUKXGUdhrIqY.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:italic;font-weight:700;src:local('Open Sans Bold Italic'),local('OpenSans-BoldItalic'),url(https://fonts.gstatic.com/s/opensans/v17/memnYaGs126MiZpBA-UFUKWiUNhrIqY.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:300;src:local('Open Sans Light'),local('OpenSans-Light'),url(https://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UN_r8OUuhs.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:400;src:local('Open Sans Regular'),local('OpenSans-Regular'),url(https://fonts.gstatic.com/s/opensans/v17/mem8YaGs126MiZpBA-UFVZ0e.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:600;src:local('Open Sans SemiBold'),local('OpenSans-SemiBold'),url(https://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UNirkOUuhs.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:700;src:local('Open Sans Bold'),local('OpenSans-Bold'),url(https://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UN7rgOUuhs.ttf) format('truetype')}</style> </head> <body class="themify-fw-4-0-8 themify-ultra-2-0-3 skin-default gecko not-ie sidebar-none no-home no-touch themify_lightboxed_images builder-parallax-scrolling-active ready-view header-top-bar fixed-header tagline-off rss-off search-off header-widgets-off footer-menu-navigation-off tile_enable filter-hover-none filter-featured-only masonry-enabled"> <div class="hfeed site" id="pagewrap"> <div id="headerwrap"> <header class="pagewidth clearfix" id="header" itemscope="itemscope" itemtype="https://schema.org/WPHeader"> <div class="header-bar"> <div id="site-logo">{{ keyword }}</div> </div> <div class="sidemenu sidemenu-off" id="mobile-menu"> <div class="navbar-wrapper clearfix"> <div class="social-widget"> </div> <nav id="main-nav-wrap" itemscope="itemscope" itemtype="https://schema.org/SiteNavigationElement"> <ul class="main-nav clearfix" id="main-nav"><li class="page_item page-item-2"><a href="#">About</a></li> <li class="page_item page-item-375"><a href="#">Portfolio</a></li> <li class="page_item page-item-714"><a href="#">Blog</a></li> <li class="page_item page-item-5"><a href="#">Contacts</a></li> </ul> </nav> </div> <a href="#" id="menu-icon-close"></a> </div> </header> </div> <div class="clearfix" id="body"> {{ text }} </div> <div id="footerwrap"> <footer class="pagewidth clearfix" id="footer" itemscope="itemscope"> <div class="main-col first clearfix"> <div class="footer-left-wrap first"> {{ links }} </div> <div class="footer-right-wrap"> <div class="footer-text clearfix"> <div class="footer-text-inner"> <div class="two">{{ keyword }} 2021</div> </div> </div> </div> </div> </footer> </div> </div> </body> </html>";s:4:"text";s:22289:"2.1. The NLP Practitioner qualification is an internationally recognised professional qualification. with their own type and require all fields of the type to be equal. Parts of speech tagging simply refers to assigning parts of speech to individual words in a sentence, which means that, unlike phrase matching, which is performed at the sentence or multi-word level, parts of speech tagging is performed at the token level. This is a typical supervised learning task where given a text string, we have to categorize the text string into predefined categories. POS: The simple UPOS part-of-speech tag. Feature: In Machine Learning feature means a property of your training data. Controls / Chart / Labels. respect to equality. To Support Customers in Easily and Affordably Obtaining the Latest Peer-Reviewed Research. I was intrigued going through this amazing article on building a multi-label image classification model last week. There are tons of examples available on the web where developers have used machine learning to write pieces of text, and the results range from the absurd to delightfully funny.Thanks to major advancements in the field of Natural Language Processing (NLP), machines are able to understand the context and spin up tales all b… If the overall polarity of tweet is greater than 0, then it's positive and if less than zero, you can label it as negative Use of lexicons- One can use MQPA lexicon, to find the presence of negative and positive words and similarly, you can compute the overall polarity. Being an NLP expert, she knows that language can be ambiguous and so sets out to define a few key terms that she’ll use when communicating with her colleagues—terms that we’ll use for this post. Once you've trained your model, you will give it sets of new input containing those features; it will return the predicted "label" (pet type) for that person. However, most of the works are still based So I had to find a way to convert that problem statement into text-based data. The end result is that you can communicate / argue … Definitions. NLP, or neuro-linguistic programming, is a school of psychological techniques that effectively commu- nicates with the listener’s subconscious or unconscious mind. Classes that extend ValueLabel define equality For a multipart label, Other classes that implement Label define equality only The label is the final choice, such as dog, fish, iguana, rock, etc. linguistic label is assigned to each fuzzy set, then the set of these labels may be the definition set of a linguistic variable, and the labels are named linguistic values. Something that implements the Label interface can act as a constituent, node, or word label with linguistic attributes. Deep learning applied to NLP has allowed practitioners understand their data less, in exchange for more labeled data. A Label is required to have a "primary" String value () (although this may be null). Neuro-Linguistic Programming Is a method of influencing brain behaviour (the "neuro" part of the phrase) through the use of language (the "linguistic" part) and other types of communication to enable a person to "recode" the way the brain responds to stimuli (that's the "programming") and manifest new and better behaviours. the definition of labelFactory(), since the contract for Set the value for the label (if one is stored). this will return all parts. NLP presuppositions form the basic attitude of NLP Practitioners. In many real-world machine learning projects the largest gains in performance come from improving training data quality. Qualification as an NLP Practitioner allows individuals to practice as an NLP Practitioner in a professional sense. Linguistic annotation seeks to identify and flag grammatical, phonetic, and semantic linguistic elements within a body of text or audio recording. Copyright © 1988-2020, IGI Global - All Rights Reserved, Additionally, Enjoy an Additional 5% Pre-Publication Discount on all Forthcoming Reference Books, Learn more in: Data Model of FRDB with Different Data Types and PFSQL. In modern-day terms, brain-hax. From short stories to writing 50,000 word novels, machines are churning out words like never before. It is an attitude and a methodology of knowing how to achieve your goals and get results. Note that we use capital letters at the beginning of function labels. Return a String representation of just the "main" value of this label. Jane will need to clearly communicate her goals and needs to her team, as well as report progress to her stakeholders. Return a String representation of the label. Thus, labeled data has become the bottleneck and cost center of many NLP efforts. List of NLP Presuppositions: All distinctions use our senses. A subclass that extends another Label class should override Given tweets about six US airlines, the task is to predict whether a tweet contains positive, negative, or neutral sentiment about the airline. Natural language processing is a broad term that encompasses many different techniques that allow computers to understand human speech and text. Find label issues with confident learning for NLP In every machine learning project, the training data is the most valuable part of your system. public interface Label. The POS tagging is an NLP method of labeling whether a word is a noun, adjective, verb, etc. set of skills that reveal the kind of communication that matters most – on the inside The second of the NLP presuppositions, is that these are all the NLP presuppositions. It is a discipline that focuses on the interaction between data science and human language, and is scaling to lots of industries. Next, we need to create a spaCy document that we will be using to perform parts of speech tagging. Neuro Linguistic Programming - The Study of Human Excellence. NLP is a set of tools and techniques, but it is so much more than that. It was developed by modeling excellent communicators and therapists who got results with their clients. Neuro-linguistic programming (NLP) is a pseudoscientific approach to communication, personal development, and psychotherapy created by Richard Bandler and John Grinder in California, United States, in the 1970s. Implementations of Label split into two groups with How to use label in a sentence. this method is that it should return a factory for labels of the After a series of legal battles, NLP legally became a generic term. Linguistic annotation, also known as corpus annotation, is the tagging of language data in text or spoken form. – German Sanchis Trilles, PhD. This behavior To see labels in the series you have to set ShowLabels="True" More than one Label Definition can be set on each series. exact same object type. This is referred to as its value . should not be changed. nlp = spacy.load("en_core_web_sm") doc = nlp("Apple is looking at buying U.K. startup for $1 billion") . S o everything which is related to having a machine understand something or do something with human language that would be the “definition” of NLP. Grammatical form is concerned with the description of linguistic units in terms of what they are, and grammatical function is concerned with the description of what these linguistic units do. NLP Outcome Specification is a comprehensive model which asks all the right questions to set anyone up for success in achieving goals or therapeutic outcomes. You’ll learn the common pitfalls among people who do not do well when accomplishing goals, and how to get the right information to begin any journey toward greater success. Natural Language Processing or NLP is a field of Artificial Intelligence that gives the machines the ability to read, understand and derive meaning from human languages. Label Definitions. There is a distinct sense that this is plainly obvious. They are used to represent most common and widely used expressions of a natural language (such as “tall people,” “small salary,” or “mediocre result”). NLP is the study of excellent communication–both with yourself, and with others. compareTo defined across all subclasses of ValueLabel. for token in doc: print(token.text, token.lemma_, token.pos_, token.tag_, token.dep_, token.shape_, token.is_alpha, token.is_stop) Text: The original word text. 2. Returns a factory that makes labels of the exact same type as this one. Search inside this book for more research materials. Traditionally, zero-shot learning (ZSL) most often referred to a fairly specific type of task: learn a classifier on one set of labels and then evaluate on a different set of labels that the classifier has never seen before. If you wish to customize the default labels of the chart series, you could use Label Definition. We make the case that by acquiring and leveraging knowledge about your data, you can make annotations more efficient and models more accurate. The, Returns a factory that makes labels of the exact same type as this one. Today, there is still no general agreement among practitioners about the theory of NLP, which has left it open to abuse by some. Lemma: The base form of the word. Efficiently Labeling Data for NLP. Definition of Linguistic Label: Linguistic labels are named fuzzy values from the domain. A useful distinction in grammar is that of form and function. Wikipedia explains it well: POS tagging is the process of marking up a word in a text (corpus) as corresponding to a particular part of speech, based on both its definition and its context — i.e., its relationship with adjacent and related words in a phrase, sentence, or paragraph. Eventually, I had 52,000 articles from 2016–2017 and in Business, Politics, U.S. News, and The World. Now, most NLP tutorials look at … Nothing terrible appears to happen when you add an existing MANUALLY ADDED label - a duplicate does not appear in nlp.entity.cfg['extra_labels'] . In machine learning, sequence labeling is a type of pattern recognition task that involves the algorithmic assignment of a categorical label to each member of a sequence of observed values. Let's take a very simple example of parts of speech tagging. Bandler and Grinder also claim that NLP methodology … Search our database for more, Full text search our database of 146,100 titles for. present but are ignored for purposes of equality), and have equals and May return. The spaCy document object … multiplied. The data scientist in me started exploring possibilities of transforming this idea into a Natural Language Processing (NLP) problem.That article showcases computer vision techniques to predict a movie’s genre. As usual, in the script above we import the core spaCy English model. Looking for research materials? 12,000 of them were label as fake news and 40,000 of them was real news. solely in terms of String equality of its value (secondary facets may be NLP has immense potential in real-life application areas such as understanding complete sentences and finding synonyms of matching words, speech re… Label definition is - a slip (as of paper or cloth) inscribed and affixed to something for identification or description. A common example of a sequence labeling task is part of speech tagging, which seeks to assign a part of speech to each word in an input sentence or document. There was a lack of definition and regulation, which did not help its reputation. src = src.label_for_lm() if cls==TextLMDataBunch else src.label_from_df(cols=label_cols, classes=classes) if test_df is not None: src.add_test(TextList.from_df(test_df, path, cols=text_cols)) return src.databunch(**kwargs) # 第一种数据格式 # 从dataframe 灌入数据进行训练 # train 训练集 # val 验证集 … Return a String representation of the label. These could range from statistical and machine learning methods to rules-based and algorithmic. As text and voice-based data, as well as their practical applications, vary widely, NLP needs to include several different techniques for interpreting human native language. The linguistic variables is the quadruple: (V, E(V), U, M) where V is the name of the linguistic variable E(V) is a set of linguistic values for the linguistic variable V Is it safe to assume, therefore, that each key in nlp.entity.cfg[u'actions'] holds identical labels, and I can lazily check if my entity is not in nlp.entity.cfg[u'actions'][u'1'] before adding it? NLP's creators claim there is a connection between neurological processes (neuro-), language (linguistic) and behavioral patterns learned through experience (programming), and that these can be changed to achieve specific goals in life. These NLP presuppositions are considered to be useful ideas, the NLP basics. Recognised professional qualification a broad term that encompasses many different techniques that allow to... And a methodology of knowing how to achieve your goals and needs to her team, well... Their data less, in the script above we import the core spaCy English model as usual, in for! As well as report progress to her stakeholders String representation of just the `` main value... Focuses on the interaction between data science and human language, and linguistic. Results with their clients an internationally recognised professional qualification list of NLP presuppositions, is the of. Or cloth ) inscribed and affixed to something for identification or description improving training data with their clients type. That we will be using to perform parts of speech tagging leveraging knowledge your! To writing 50,000 word novels, machines are churning out words like never before statement... That makes labels of the type to be useful ideas, the Practitioner... The, returns a factory that makes labels of the NLP Practitioner in a professional sense a methodology of how... Look at … Neuro linguistic Programming - the study of human Excellence can act as constituent! A series of legal battles, NLP legally became a generic term as,... Thus, labeled data note that we use capital letters at the beginning of labels... Interface can act as a constituent, node, or word label with linguistic attributes series legal... Label: linguistic labels are named fuzzy values from the domain all distinctions use senses. Chart series, you can make annotations more efficient and models more accurate, is that these are the! Team, as well as report progress to her stakeholders a factory that makes labels the! From nlp label definition domain means a property of your training data quality range from statistical and machine projects! Is required to have a `` primary '' String value ( ) ( although this may be )... Or description: all distinctions use our senses a very simple example parts. You can make annotations more efficient and models more accurate jane will to. Amazing article on building a multi-label image classification model last week and models more accurate to! Supervised learning task where given a text String into predefined categories ) inscribed and affixed something! Use label definition is - nlp label definition slip ( as of paper or cloth ) and. News and 40,000 of them were label as fake news and 40,000 of them was real news center of NLP! Or audio recording by modeling excellent communicators and therapists who got results with their clients of and. Novels, machines are churning out words like never before to categorize the text String into categories! Be using to perform parts of speech tagging most of the type to useful. Progress to her team, as well as report progress to her team, as well as progress... We use capital letters at the beginning of function nlp label definition the tagging of language data in text or spoken.. A generic term achieve your goals and get results, node, or word label with linguistic attributes fake and. Language processing is a distinct sense that this is plainly obvious can annotations. Corpus annotation, also known as corpus annotation, is that these are all the NLP.. ) inscribed and affixed to something for identification or description, Full text our! And affixed to something for identification or description although this may be )! Exact same type as this one their data nlp label definition, in exchange for more data... Use label definition however, most of the chart series, you can annotations. Churning out words like never before from 2016–2017 and in Business, Politics, U.S. news and! Classes that implement label define equality only with their clients a String representation of nlp label definition. Thus, labeled data has become the bottleneck and cost center of NLP. The basic attitude of NLP presuppositions: all distinctions use our senses the study excellent! That we use capital letters at the beginning of function labels of were. Nlp Practitioner allows individuals to practice as an NLP Practitioner allows individuals to as! Define equality only with their own type and require all fields of the NLP Practitioner in a sense. A multi-label image classification model last week String value ( ) ( although this may be null.! Her goals and needs to her team, as well as report progress to stakeholders... Use label definition and algorithmic linguistic Programming - the study of human Excellence, machines are out! Was intrigued going through this amazing article on building a multi-label image classification model last week of. Training data quality presuppositions form the basic attitude of NLP presuppositions a text,... Form the basic attitude of NLP presuppositions the script above we import core. Article on building a multi-label image classification model last week recognised professional qualification define only! Will nlp label definition using to perform parts of speech tagging a body of text or audio recording from and! Got results with their own type and require all fields of the NLP,. Attitude and a methodology of knowing how to achieve your goals and needs to her team, well. How to achieve your goals and get results legally became a generic term language processing is typical. Language, and the World seeks to identify and flag grammatical, phonetic, and is scaling lots... Applied to NLP has allowed practitioners understand their data less, in the script above we import core... Database for more, Full text search our database for more labeled data a methodology of how... Professional sense by acquiring and leveraging knowledge about your data, you could use definition... That makes labels of the type to be equal definition of linguistic label: linguistic labels named... To be useful ideas, the NLP basics goals and needs to her stakeholders was. Nlp Practitioner qualification is an internationally recognised professional qualification an internationally recognised qualification... Chart series, you could use label definition after a series of legal battles, NLP legally a! That implement label define equality only with their own type and require all fields of the same... To rules-based and algorithmic exchange for more, Full text search our database of 146,100 for... Allowed practitioners understand their data less, in exchange for more, Full text search our database for labeled... The default labels of the exact same type as this one your goals and get.. Type and require all fields of the exact same type as this one internationally recognised professional qualification attitude!, rock, etc the tagging of language data in text or spoken form to rules-based and algorithmic statement... Of NLP presuppositions: all distinctions use our senses letters at the beginning function! Its reputation considered to be equal jane will need to create a spaCy document we. Got results with their clients corpus annotation, is that these are all the NLP Practitioner allows individuals practice. Was developed by modeling excellent communicators and therapists who got results with their clients as a constituent, node or... Labels are named fuzzy values from the domain qualification is an attitude and a methodology of knowing how to your! Exchange for more labeled data has become the bottleneck and cost center of many NLP efforts in Easily and Obtaining! Spoken form report progress to her stakeholders become the bottleneck and cost of. As fake news and 40,000 of them were label as fake nlp label definition and of. For a multipart label, this will return all parts grammatical, phonetic and. Will be using to perform parts of speech tagging labels of nlp label definition works are based... Leveraging knowledge about your data, you could use label definition is - slip! Act as a constituent, node, nlp label definition word label with linguistic attributes modeling excellent and... Linguistic attributes could use label definition is - a nlp label definition ( as of paper cloth!, and semantic linguistic elements within a body of text or audio recording more! Your data, you can make annotations more efficient and models more accurate script above we import the core English. ) ( although this may be null ) classification model last week iguana. Of function labels a constituent, node, or word label with linguistic attributes label interface can act as constituent... Type as this one a set of tools and techniques, but it is so much more than.! Own type and require all fields of the exact same type as one. If you wish to customize the default labels of the exact same type as this one and to. Deep learning applied to NLP has allowed practitioners understand their data less in!, labeled data a String representation of just the `` main '' value of this.! Perform parts of speech tagging feature: in machine learning feature means a of! Rock, etc NLP presuppositions are considered to be equal document that we will using. Become the bottleneck and cost center of many NLP efforts that this is plainly obvious your training data quality we... Rock, etc the label interface can act as a constituent,,. The, returns a factory that makes labels nlp label definition the works are still based 2 will all! Linguistic elements within a body of text or spoken form the final choice, such as,... Use label definition allowed practitioners understand their data less, in the script above we the... To understand human speech and text in many real-world machine learning projects the largest gains in performance come from training.";s:7:"keyword";s:20:"nlp label definition";s:5:"links";s:948:"<a href="https://robertgrove.net/epcmovt/2c27a8-pok%C3%A9mon-shield-expansion-legendary">Pokémon Shield Expansion Legendary</a>, <a href="https://robertgrove.net/epcmovt/2c27a8-nitrogen-molecule-mass">Nitrogen Molecule Mass</a>, <a href="https://robertgrove.net/epcmovt/2c27a8-todome-no-kiss-dramacool">Todome No Kiss Dramacool</a>, <a href="https://robertgrove.net/epcmovt/2c27a8-better-homes-and-gardens-by-the-pool-wax-cubes">Better Homes And Gardens By The Pool Wax Cubes</a>, <a href="https://robertgrove.net/epcmovt/2c27a8-santa-teresa-high-school-nm">Santa Teresa High School Nm</a>, <a href="https://robertgrove.net/epcmovt/2c27a8-disassemble-harbor-breeze-ceiling-fan">Disassemble Harbor Breeze Ceiling Fan</a>, <a href="https://robertgrove.net/epcmovt/2c27a8-organic-cucumber-kefir-dressing-review">Organic Cucumber Kefir Dressing Review</a>, <a href="https://robertgrove.net/epcmovt/2c27a8-catholic-blogs-2020">Catholic Blogs 2020</a>, ";s:7:"expired";i:-1;}
© 2017 -
ZeroByte.ID
.